CR - 6D

The 6-D Case

We obtain the 6-D convergent ratio vector by successive transformations of a base vector by the 6-D triangular matrix:

0000011
0000112
000111×3
0011114
0111115
1111116

This leads to the sequence

6-D Sequence
1 6 21 91 371 1547 6405 26585 110254 s1
2 11 41 176 721 3003 12439 51623 214103 s2
3 15 59 250 1030 4283 17752 73658 305513 s3
4 18 74 309 1280 5313 22035 91410 379171 s4
5 20 85 350 1456 6034 25038 103849 430794 s5
6 21 91 371 1547 6405 26585 110254 457379 s6


The Matrix Aspect

The 6-D convergent ratio includes 15 relations between components.  Together with inverses this creates 30 core matrices.

These are arranged in the table below in groups to show the relations between them.  The first row, s6/s1 to s2/s1, comprises the 5 biggest.  In the second row we see many of the matrices obtained by adding together matrices from the third row.  The third row shows s6 mapping to other components.

There are visual clues to the relations between components.  The second half of the table is more or less the inverses of the first half.



Table of 6-D Core Matrices
s1→s6 (s6/s1)
000001
000011
000111
001111
011111
111111
s1→s5 (s5/s1)
000010
000101
001011
010111
101111
011111
s1→s4 (s4/s1)
000100
001010
010101
101011
010111
001111
s1→s3 (s3/s1)
001000
010100
101010
010101
001011
000111
s1→s2 (s2/s1)
010-000
101000
010100
001010
000101
000011
s6→s1 (s1/s6)
0000-11
000-110
00-1100
0-1-1000
-110000
100000
s6→s2 (s2/s6)
000-110
00-11-11
0-11-110
-11-1100
1-11000
010000
s6→s3 (s3/s6)
00-1100
0-11-110
-11-11-11
1-11-110
01-1100
001000
s6→s4 (s4/s6)
0-11000
-11-1100
1-11-110
01-11-11
001-110
000100
s6→s5 (s5/s6)
-1-10000
1-11000
01-1100
001-110
0001-11
000010
s5→s3 (s3/s5)
000-101
00-1001
0-10010
-100100
001000
110000
s4→s5 (s5/s4)
00-1010
0-10001
-100001
000010
100100
011000
s3→s6 (s6/s3)
0-1010-0
-100010
000001
100001
010010
001100
s2→s4 (s4/s2)
-101000
000100
100010
010001
001001
000110
s3→s4 (s4/s3)
1000-11
010-110
000100
0-11100
-110010
100001
s5→s1 (s1/s5)
-1-1011-1
-1-10100
000-101
11-1-101
100000
-10110-1
s2→s5 (s5/s2)
-1010-11
000010
10-1110
001001
-111001
100110
s2→s6 (s6/s2)
10-1010
000001
-101001
000110
100110
011001
s5→s2 (s2/s5)
-1-10100
-1-10010
00-1001
100-101
010000
00110-1
s4→s6 (s6/s4)
-1-10001
-1-1-1011
0-1-1011
000001
011000
11110-1
s3→s2 (s2/s3)
-11001-1
1-111-10
010000
010-110
1-101-11
-100010
s2→s3 (s3/s2)
10-111-1
001000
-1110-11
100010
10-1110
-101001
s4→s2 (s2/s4)
01100-1
1111-1-1
11100-1
010000
0-10001
-1-1-1011
s5→s4 (s4/s5)
11-1-101
100-101
-100100
-1-1111-1
000100
110-101
s3→s5 (s5/s3)
-110-110
1-101-11
000010
-110010
1-111-11
010010
s4→s3 (s3/s4)
0110-10
11100-1
11010-1
001000
-100001
0-1-1011
s2→s1 (s1/s2)
-111-1-11
100000
10-111-1
-101000
-1010-11
10-1010
s3→s1 (s1/s3)
0-111-10
-11001-1
100000
1000-11
-110-110
0-10100
s4→s1 (s1/s4)
10010-1
01100-1
0110-10
100000
00-1010
-1-10001
s5→s6 (s6/s5)
-10110-1
00110-1
110000
110-101
000001
-1-10110


Matrices by Size

Component Relations

Visual appraisal of the first three rows of the table above reveals the relations in the first two columns below.  Closer investigation will confirm the others.  The list is not exhaustive.  The patterns may be extrapolated to higher dimensions.




The 6-D Equations

Since we have 30 core matrices which, together with their negatives, comprise the solutions to the 10 equations of degree 6 in question, there is probably a way to select 10 groups of 6 solutions to build the equations.  This was trivial in the 3-D case but the 5-D and higher cases are harder.  At least we can arrange the solutions in size order.  Meanwhile plan B to obtain the first equation relies on the relations listed above:

(s1 + s2 + s3 + s4 + s5 + s6) / (s1 + s2 + s3 + s4 + s5 + s6) = 1

s6/(s1 + s2 + s3 + s4 + s5 + s6) = s1/s6

s1 / (s1 + s2 + s3 + s4 + s5 + s6) = s1 / s6 * s1 / s6 = s1 / s62

s2 / (s1 + s2 + s3 + s4 + s5 + s6) = s2 / s6 * s1 / s6 = s1 / s62

s3 / (s1 + s2 + s3 + s4 + s5 + s6) = s3 / s6 * s1 / s6 = s1 / s62

s4 / (s1 + s2 + s3 + s4 + s5 + s6) = s4 / s6 * s1 / s6 = s2 / s62

s5 / (s1 + s2 + s3 + s4 + s5 + s6) = s5 / s6 * s1 / s6 = s1 / s62



back