CR - 8D

The 8-D Case

We obtain the 8-D convergent ratio vector by successive transformations of a base vector by the 8-D triangular matrix:

000000011
000000112
000001113
00001111×4
000111115
001111116
011111117
111111118

This leads to the sequence

8-D Sequence
1 8 36 204 1086 5916 31998 173502 940005 s1
2 15 71 400 2136 11628 62910 341088 1848012 s2
3 21 104 581 3115 16940 91686 497046 2693109 s3
4 26 134 741 3990 21671 117347 636064 3446520 s4
5 30 160 875 4731 25661 139018 753411 4082584 s5
6 33 181 979 5312 28776 155958 845097 4579630 s6
7 35 196 1050 5712 30912 167586 908007 4920718 s7
8 36 204 1086 5916 31998 173502 940005 5094220 s8


The Matrix Aspect

The 8-D convergent ratio includes 28 relations between components.  Together with inverses this creates 56 core matrices.

As in the 6-D Case, these are arranged here to facilitate visual recognition of patterns of relations between them.  The second half of the table is more or less the inverses of the first half.



Table of 8-D Core Matrices
s1→s8 (s8/s1)
00000001
00000011
00000111
00001111
00011111
00111111
01111111
11111111
s1→s7 (s7/s1)
00000010
00000101
00001011
00010111
00101111
01011111
10111111
01111111
s1→s6 (s6/s1)
00000100
00001010
00010101
00101011
01010111
10101111
01011111
00111111
s1→s5 (s5/s1)
00001000
00010100
00101010
01010101
10101011
01010111
00101111
00011111
s1→s4 (s4/s1)
00010000
00101000
01010100
10101010
01010101
00101011
00010111
00001111
s1→s3 (s3/s1)
00100000
01010000
10101000
01010100
00101010
00010101
00001011
00000111
s1→s2 (s2/s1)
01000000
10100000
01010000
00101000
00010100
00001010
00000101
00000011
s8→s1 (s1/s8)
000000-11
00000-110
0000-1100
000-11000
00-110000
0-1100000
-11000000
10000000
s8→s2 (s2/s8)
00000-110
0000-11-11
000-11-110
00-11-1100
0-11-11000
-11-110000
1-1100000
01000000
s8→s3 (s3/s8)
0000-1100
000-11-110
00-11-11-11
0-11-11-110
-11-11-1100
1-11-11000
01-110000
00100000
s8→s4 (s4/s8)
000-11000
00-11-1100
0-11-11-110
-11-11-11-11
1-11-11-110
01-11-1100
001-11000
00010000
s8→s5 (s5/s8)
00-110000
0-11-11000
-11-11-1100
1-11-11-110
01-11-11-11
001-11-110
0001-1100
00001000
s8→s6 (s6/s8)
0-1100000
-11-110000
1-11-11000
01-11-1100
001-11-110
0001-11-11
00001-110
00000100
s8→s7 (s7/s8)
-11000000
1-1100000
01-110000
001-11000
0001-1100
00001-110
000001-11
00000010
s7→s3 (s3/s7)
00000-101
0000-1001
000-10010
00-100100
0-1001000
-10010000
00100000
11000000
s6→s5 (s5/s6)
0000-1010
000-10001
00-100001
0-1000010
-10000100
00001000
10010000
01100000
s5→s7 (s7/s5)
000-10100
00-100010
0-1000001
-10000001
00000010
10000100
01001000
00110000
s4→s8 (s8/s4)
00-101000
0-1000100
-10000010
00000001
10000001
01000010
00100100
00011000
s3→s6 (s6/s3)
0-1010000
-10001000
00000100
10000010
01000001
00100001
00010010
00001100
s2→s4 (s4/s2)
-10100000
00010000
10001000
01000100
00100010
00010001
00001001
00000110
s4→s5 (s5/s4)
100000-11
01000-110
0010-1100
00001000
00-111000
0-1100100
-11000010
10000001
s2→s7 (s7/s2)
10-1010-11
00000010
-1010-1110
00001001
10-111001
00100110
-11100110
10011001
s6→s1 (s1/s6)
-100-10100
0-1-100010
0-1-100001
-100-10001
0000-1010
10000000
010010-10
0011000-1
s7→s4 (s4/s7)
-1-1010000
-1-1001000
00-100100
100-10010
0100-1001
00100-101
00010000
0000110-1
s2→s6 (s6/s2)
10-101000
00000100
-10100010
00010001
10001001
01000110
00100110
00011001
s4→s6 (s6/s4)
-11000-110
1-110-11-11
0-1101-110
00000100
0-1100100
-11-111-110
1-11001-11
01000010
s3→s5 (s5/sub>/s3)
0-101001-1
-100011-10
00001000
1001-1010
011-10001
01000001
1-1010010
-10001100
s2→s5 (s5/s2)
-1010-111-1
00001000
10-1110-11
00000010
-1110-1110
10001001
10-111001
-10100110
s7→s6 (s6/s7)
00-10110-1
0-100110-1
-10010000
00100-101
1100-1001
110-10010
00000100
-1-1011000
s4→s7 (s7/s4)
0-110-1100
-11-101-110
1-10001-11
00000010
-11000010
1-11001-11
01-111-110
00100100
s6→s4 (s4/s6)
-100-10001
0-1-10-1011
0-1-1-10011
-10-1-10101
0-1000010
00010000
011010-10
1111000-1
s4→s3 (s3/s4)
-1100001-1
1-11001-10
01-111-100
00100000
0010-1100
01-101-110
1-10001-11
-10000010
s5→s3 (s3/s5)
-10110-100
001100-10
1100100-1
1100010-1
00100000
-10010-101
0-1000001
00-1-10110
s5→s2 (s2/s5)
1000010-1
0100100-1
001100-10
00110-100
01000000
100-10100
00-100010
-1-1000001
s3→s2 (s2/s3)
1001-1-110
011-100-11
01000000
1-101001-1
-100011-10
-10001000
1-101-1010
010-10001
s6→s2 (s2/s6)
0-1-100010
-1-1-1-10101
-1-1-1-10011
0-1-10-1011
000-10001
01000000
1011000-1
011110-1-1
s3→s4 (s4/s3)
-110-111-10
1-101001-1
00010000
-111-110-11
1001-1010
10000010
-110-111-11
0-1010010
s7→s2 (s2/s7)
110-1-1001
110-1-1-111
0000-1001
-1-1001000
-1-1-11110-1
0-100110-1
01000000
1110-1-101
s6→s7 (s7/s6)
010010-10
1011000-1
0111000-1
011010-10
10010000
00000010
-100-10101
0-1-100011
s5→s4 (s4/s5)
-10110-1-11
00110-100
1100010-1
110-1110-1
00010000
-1-1110-101
-10000001
10-1-10110
s3→s7 (s7/s3)
-110-110-11
1-101-1010
00000010
-110-111-11
1-1010010
00010010
-111-111-11
10010010
s5→s6 (s6/s5)
11-1-1011-1
100-10100
-10010-101
-1-1110-101
00000100
11-1-1111-1
10000100
-10110-101
s7→s5 (s5/s7)
-1-100110-1
-1-1-11110-1
0-1001000
0100-1001
111-1-1-111
1100-1001
00001000
-1-101110-1
s6→s3 (s3/s6)
0-1-100011
-1-1-1-10011
-1-1-1-1-1111
0-1-1-10011
00-100001
00100000
0111000-1
111110-1-1
s4→s2 (s2/s4)
0-11001-10
-11-111-11-1
1-11001-10
01000000
01000-110
1-110-11-11
1-1101-110
0-1000100
s7→s8 (s8/s7)
0110-1-101
1110-1-101
11000000
0000110-1
-1-101110-1
-1-1011000
00000001
110-1-1011
s6→s8 (s8/s6)
0011000-1
011110-1-1
111110-1-1
1111000-1
01100000
00000001
0-1-100011
-1-1-1-10111
s5→s8 (s8/s5)
-1-1010-101
-1-1000001
00-1-10110
10-1-10110
00000001
-10110-101
00110000
1100110-1
s3→s8 (s8/s3)
1000-1010
010-10001
00000001
0-1010010
-10001100
00001100
10010010
01100001
s2→s8 (s8/s2)
-1010-1010
00000001
10-101001
00000110
-10100110
00011001
10011001
01100110
s2→s1 (s1/s2)
-111-1-111-1
10000000
10-111-1-11
-10100000
-1010-111-1
10-101000
10-1010-11
-1010-1010
s3→s1 (s1/s3)
-111-100-11
1001-1-110
10000000
-110-111-10
0-101001-1
0-1010000
-110-110-11
1000-1010
s4→s1 (s1/s4)
00-111-100
0-11001-10
-1100001-1
10000000
100000-11
-11000-110
0-110-1100
00-101000
s5→s1 (s1/s5)
11-1-1110-1
1000010-1
-10110-100
-10110-1-11
10000000
11-1-1011-1
000-10100
-1-1010-101
s2→s3 (s3/s2)
10-111-1-11
00100000
-1110-111-1
10001000
10-1110-11
-10100010
-1010-1110
10-101001
s7→s1 (s1/s7)
110-1-1010
110-1-1001
00000-101
-1-1010000
-1-100110-1
00-10110-1
10000000
0110-1-101


Matrices by Size

Component Relations

Visual appraisal of the first three rows of the table above reveals the relations in the first two columns below.  Closer investigation will confirm the others.  The list is not exhaustive.




The 8-D Equations

text



back