CR - 9D

The 9-D Case

We obtain the 9-D convergent ratio vector by successive transformations of a base vector by the 9-D triangular matrix:

0000000011
0000000112
0000001113
0000011114
000011111×5
0001111116
0011111117
0111111118
1111111119

This leads to the sequence

9-D Sequence
1 9 45 285 1695 10317 62349 377739 2286648 s1
2 17 89 561 3345 20349 123003 745161 4510947 s2
3 24 131 820 4906 29820 180312 1092234 6612243 s3
4 30 170 1055 6336 38471 232715 1409487 8533227 s4
5 35 205 1260 7596 46067 278782 1688269 10221496 s5
6 39 235 1430 8651 52403 317253 1920984 11630983 s6
7 42 259 1561 9471 57309 347073 2101296 12723217 s7
8 44 276 1650 10032 60654 367422 2224299 13468378 s8
9 45 285 1695 10317 62349 377739 2286648 13846117 s9


The Matrix Aspect

The 9-D convergent ratio includes 36 relations between components.  Together with inverses this creates 72 core matrices



Table of 9-D Core Matrices
s1→s9 (s9/s1)
000000001
000000011
000000111
000001111
000011111
000111111
001111111
011111111
111111111
s1→s8 (s8/s1)
000000010
000000101
000001011
000010111
000101111
001011111
010111111
101111111
011111111
s1→s7 (s7/s1)
000000100
000001010
000010101
000101011
001010111
010101111
101011111
010111111
001111111
s1→s6 (s6/s1)
000001000
000010100
000101010
001010101
010101011
101010111
010101111
001011111
000111111
s1→s5 (s5/s1)
000010000
000101000
001010100
010101010
101010101
010101011
001010111
000101111
000011111
s1→s4 (s4/s1)
000100000
001010000
010101000
101010100
010101010
001010101
000101011
000010111
000001111
s1→s3 (s3/s1)
001000000
010100000
101010000
010101000
001010100
000101010
000010101
000001011
000000111
s1→s2 (s2/s1)
010000000
101000000
010100000
001010000
000101000
000010100
000001010
000000101
000000011
s9→s1 (s1/s9)
0000000-11
000000-110
00000-1100
0000-11000
000-110000
00-1100000
0-11000000
-110000000
100000000
s9→s2 (s2/s9)
000000-110
00000-11-11
0000-11-110
000-11-1100
00-11-11000
0-11-110000
-11-1100000
1-11000000
010000000
s9→s3 (s3/s9)
00000-1100
0000-11-110
000-11-11-11
00-11-11-110
0-11-11-1100
-11-11-11000
1-11-110000
01-1100000
001000000
s9→s4 (s4/s9)
0000-11000
000-11-1100
00-11-11-110
0-11-11-11-11
-11-11-11-110
1-11-11-1100
01-11-11000
001-110000
000100000
s9→s5 (s5/s9)
000-110000
00-11-11000
0-11-11-1100
-11-11-11-110
1-11-11-11-11
01-11-11-110
001-11-1100
0001-11000
000010000
s9→s6 (s6/s9)
00-1100000
0-11-110000
-11-11-11000
1-11-11-1100
01-11-11-110
001-11-11-11
0001-11-110
00001-1100
000001000
s9→s7 (s7/s9)
0-11000000
-11-1100000
1-11-110000
01-11-11000
001-11-1100
0001-11-110
00001-11-11
000001-110
000000100
s9→s8 (s8/s9)
-110000000
1-11000000
01-1100000
001-110000
0001-11000
00001-1100
000001-110
0000001-11
000000010
s8→s3 (s3/s8)
000000-101
00000-1001
0000-10010
000-100100
00-1001000
0-10010000
-100100000
001000000
110000000
s7→s5 (s5/s7)
00000-1010
0000-10001
000-100001
00-1000010
0-10000100
-100001000
000010000
100100000
011000000
s6→s7 (s7/s6)
0000-10100
000-100010
00-1000001
0-10000001
-100000010
000000100
100001000
010010000
001100000
s5→s9 (s9/s5)
000-101000
00-1000100
0-10000010
-100000001
000000001
100000010
010000100
001001000
000110000
s4→s8 (s8/s4)
00-1010000
0-10001000
-100000100
000000010
100000001
010000001
001000010
000100100
000011000
s3→s6 (s6/s3)
0-10100000
-100010000
000001000
100000100
010000010
001000001
000100001
000010010
000001100
s2→s4 (s4/s2)
-101000000
000100000
100010000
010001000
001000100
000100010
000010001
000001001
000000110
s5→s4 (s4/s5)
10000001-1
0100001-10
001001-100
00011-1000
000100000
001-101000
01-1000100
1-10000010
-100000001
s4→s7 (s7/s4)
100000-101
01000-1001
0010-10010
000000100
00-1011000
0-10011000
-100100100
001000010
110000011
s3→s9 (s9/s3)
1000-10100
010-100010
000000001
0-10100001
-100010010
000001100
100001100
010010010
001100001
s2→s6 (s6/s2)
10-1010000
000001000
-101000100
000100010
100010001
010001001
001000110
000100110
000011001
s7→s2 (s2/s7)
-100-101000
0-1-1000100
0-1-1000010
-100-100001
0000-10001
10000-1010
010000000
0010010-10
00011000-1
s8→s5 (s5/s8)
-1-10100000
-1-10010000
00-1001000
100-100100
0100-10010
00100-1001
000100-101
000010000
00000110-1
s3→s7 (s7/s3)
0-101000-11
-100010-110
000000100
1000-11100
010-110010
000100001
0-11100001
-110010010
100001100
s3→s5 (s5/s3)
-110-11001-1
1-101-111-10
000010000
-110010-110
1-111-101-11
010000010
010-110010
1-101-111-11
-100010010
s3→s4 (s4/s3)
1000-111-10
010-11001-1
000100000
0-111000-11
-110010-110
100000100
1000-11100
-110-110010
0-10100001
s4→s6 (s6/s4)
0110-1-1001
1110-1-1-111
11000-1001
000001000
-1-1001110-1
-1-1-111110-1
0-10011000
010000001
1110-1-1011
s6→s8 (s8/s6)
-100-100010
0-1-10-10101
0-1-1-100011
-10-1-100011
0-100-10101
000000010
010010000
1011010-10
01111000-1
s5→s6 (s6/s5)
-1100000-11
1-11000-110
01-110-1100
001-101000
000001000
00-111-1100
0-11001-110
-1100001-11
100000010
s7→s8 (s8/s7)
10-111-101-1
0010010-10
-1110010-10
10011-101-1
100100000
-111-1010-11
000000010
1-1-110-1110
-100-101001
s8→s7 (s7/s8)
11-1-10110-1
100-10110-1
-100100000
-1-1111-1-101
000100-101
110-100100
110-1-1111-1
000000100
-1-10110-101
s6→s5 (s5/s6)
010010-100
1011000-10
01110000-1
01101000-1
1001010-10
000010000
-1000000-10
0-100-10101
00-1-100011
s8→s6 (s6/s8)
000-10110-1
00-100110-1
0-10010000
-100100-101
00100-1001
1100-10010
110-100100
000001000
-1-10110000
s6→s4 (s4/s6)
0011000-10
0111100-1-1
1111100-1-1
1111010-1-1
01101000-1
000100000
0-10000001
-10-1-100011
0-1-1-1-10111
s4→s3 (s3/s4)
00-10110-10
0-1001100-1
-10010010-1
001000000
110000-101
11000-1001
0010-10010
-100000100
0-1-1011000
s5→s3 (s3/s5)
-1100001-10
1-11001-11-1
01-111-11-10
001001-100
001000000
01-110-1100
1-11-101-110
-11-10001-11
0-10000010
s2→s8 (s8/s2)
-1010-10100
000000010
10-1010001
000001001
-101000110
000100110
100011001
010011001
001100110
s2→s5 (s5/s2)
10-1011-1-11
000010000
-1011-1011-1
001000100
11-1011-101
100010001
1011-10110
-101000110
10-1011001
s2→s3 (s3/s2)
-1011-1-111-1
001000000
11-1011-1-11
100010000
-1011-1011-1
-101000100
10-1011-101
10-1010001
-1010-10110
s3→s2 (s2/s3)
-11001-1-110
1-111-100-11
010000000
010-11001-1
1-101-111-10
-100010000
-100010-110
1-101-101-11
010-100010
s5→s2 (s2/s5)
0-11001-100
-11-111-11-10
1-11001-11-1
0100001-10
010000000
1-11000-110
-11-110-11-11
0-11-101-110
00-1000100
s8→s2 (s2/s8)
110-1-10100
110-1-10010
00000-1001
-1-10100-101
-1-10010000
00-100110-1
100-10110-1
010000000
00110-1-101
s7→s3 (s3/s7)
-100-1010-11
0-1-1000010
0-1-100-1110
-100-1-11001
000-100001
10-110-1010
001000000
-1110010-10
10011000-1
s5→s8 (s8/s5)
00-110-1100
0-11-101-110
-11-10001-11
1-10000010
000000010
-1100001-11
1-11001-110
01-111-1100
001001000
s2→s7 (s7/s2)
-1010-1011-1
000000100
10-1011-101
000010001
-1011-10110
001000110
11-1011001
100011001
-101100110
s6→s2 (s2/s6)
01001000-1
1011010-1-1
0111100-1-1
011110-10-1
1011000-10
010000000
000-100010
0-1-10-10101
-1-1-1-100011
s7→s4 (s4/s7)
1-1-110-1010
-100-100001
-100-1-11001
1-1-100-1110
00-1000010
-101-1010-11
000100000
10011-101-1
0110010-10
s4→s5 (s5/s4)
0110-1-1010
1110-1-1001
110000-101
000010000
-1-1010110-1
-1-1001110-1
00-1011000
100000001
0110-1-1011
s4→s2 (s2/s4)
-1-1001100-1
-1-1-11111-1-1
0-1001100-1
010000000
1110-1-1001
1110-1-1-111
01000-1001
0-10001000
-1-1-101110-1
s6→s3 (s3/s6)
00110000-1
0111100-1-1
111111-1-1-1
1111100-1-1
01110000-1
001000000
00-1000001
0-1-1-100011
-1-1-1-1-10111
s8→s4 (s4/s8)
-1-1011-1-101
-1-10100-101
000-100100
11-1-1-1111-1
100-100100
-100100-101
-1-1111-1-101
000100000
110-10110-1
s7→s6 (s6/s7)
-111-1-110-11
10000-1010
10-110-1010
-101-1010-11
-100001000
1-1-111-111-1
000001000
-111-1010-11
10010-1010
s5→s7 (s7/s5)
0-11000-110
-11-110-11-11
1-11-101-110
01-1000100
000000100
0-11001-110
-11-111-11-11
1-11001-110
010000100
s3→s8 (s8/s3)
-110-110-110
1-101-101-11
000000010
-110-110010
1-101-111-11
000010010
-110010010
1-111-111-11
010010010
s8→s9 (s9/s8)
-10110-1-101
00110-1-101
110000000
110-10110-1
00000110-1
-1-10110000
-1-10110-101
000000001
110-1-10110
s7→s9 (s9/s7)
-1010010-10
00011000-1
10011000-1
0110010-10
011000000
10010-1010
000000001
-100-101001
0-1-1000110
s6→s9 (s9/s6)
0-1-1000001
-1-1-1-100011
-1-1-1-1-10111
0-1-1-1-10111
00-1-100011
000000001
001100000
01111000-1
1111110-1-1
s4→s9 (s9/s4)
-1-1000110-1
-1-1-101110-1
0-1-1011000
000000001
0110-1-1011
1110-1-1011
110000001
000011000
-1-1011110-1
s2→s9 (s9/s2)
10-1010-101
000000001
-1010-10110
000000110
10-1011001
000011001
-101100110
001100110
110011001
s2→s1 (s1/s2)
11-1-111-1-11
100000000
-1011-1-111-1
-101000000
10-1011-1-11
10-1010000
-1010-1011-1
-1010-10100
10-1010-101
s3→s1 (s1/s3)
0-111-100-11
-11001-1-110
100000000
1000-111-10
-110-11001-1
0-10100000
0-101000-11
-110-110-110
1000-10100
s4→s1 (s1/s4)
-1-1010010-1
-1-1001100-1
00-10110-10
100000000
0110-1-1010
0110-1-1001
100000-101
00-1010000
-1-1000110-1
s5→s1 (s1/s5)
00-111-1000
0-11001-100
-1100001-10
10000001-1
100000000
-1100000-11
0-11000-110
00-110-1100
000-101000
s6→s1 (s1/s6)
1000010-10
01001000-1
00110000-1
0011000-10
010010-100
100000000
0000-10100
-100-100010
0-1-1000001
s7→s1 (s1/s7)
1-1-110-111-1
-100-101000
-100-1010-11
1-1-110-1010
00000-1010
-111-1-110-11
100000000
10-111-101-1
-1010010-10
s8→s1 (s1/s8)
110-1-1011-1
110-1-10100
000000-101
-1-1011-1-101
-1-10100000
000-10110-1
11-1-10110-1
100000000
-10110-1-101
Matrices by Size



Component Relations

The relations in the first column show how the second row of the matrix table can be derived from the first.  The second column shows how the third row can be derived from the second.  The list is not exhaustive.




The 9-D Equations


back